Search results
Results from the WOW.Com Content Network
For a real-valued function of a single real variable, the derivative of a function at a point generally determines the best linear approximation to the function at that point. Differential calculus and integral calculus are connected by the fundamental theorem of calculus. This states that differentiation is the reverse process to integration.
Newton's notation for differentiation; Leibniz's notation for differentiation; Simplest rules Derivative of a constant; Sum rule in differentiation; Constant factor rule in differentiation; Linearity of differentiation; Power rule; Chain rule; Local linearization; Product rule; Quotient rule; Inverse functions and differentiation; Implicit ...
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
The precise meaning of the variables and depends on the context of the application and the required level of mathematical rigor. The domain of these variables may take on a particular geometrical significance if the differential is regarded as a particular differential form , or analytical significance if the differential is regarded as a ...
Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation. An alternative method is to use techniques from calculus to obtain a series expansion of the ...
Discrete differential calculus is the study of the definition, properties, and applications of the difference quotient of a function. The process of finding the difference quotient is called differentiation. Given a function defined at several points of the real line, the difference quotient at that point is a way of encoding the small-scale (i ...
Multivariable calculus (also known as multivariate calculus) is the extension of calculus in one variable to calculus with functions of several variables: the differentiation and integration of functions involving multiple variables (multivariate), rather than just one.
Mathematics instructor Jaime Escalante dismissed the NCTM standards as something written by a PE teacher. [4] In 2001 and 2009, NCTM released the Principles and Standards for School Mathematics (PSSM) and the Curriculum Focal Points which expanded on the work of the previous standards documents. Particularly, the PSSM reiterated the 1989 ...