Search results
Results from the WOW.Com Content Network
With the release of version 0.3.0 in April 2016 [4] the use in production and research environments became more widespread. The package was reviewed several months later on the R blog The Beginner Programmer as "R provides a simple and very user friendly package named rnn for working with recurrent neural networks.", [5] which further increased usage.
Apache MXNet is an open-source deep learning software framework that trains and deploys deep neural networks. It aims to be scalable, allows fast model training, and supports a flexible programming model and multiple programming languages (including C++, Python, Java, Julia, MATLAB, JavaScript, Go, R, Scala, Perl, and Wolfram Language).
Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning.The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.
A network is typically called a deep neural network if it has at least two hidden layers. [3] Artificial neural networks are used for various tasks, including predictive modeling, adaptive control, and solving problems in artificial intelligence. They can learn from experience, and can derive conclusions from a complex and seemingly unrelated ...
OpenNN (Open Neural Networks Library) is a software library written in the C++ programming language which implements neural networks, a main area of deep learning research. [1] The library is open-source , licensed under the GNU Lesser General Public License .
In deep learning, fine-tuning is an approach to transfer learning in which the parameters of a pre-trained neural network model are trained on new data. [1] Fine-tuning can be done on the entire neural network, or on only a subset of its layers, in which case the layers that are not being fine-tuned are "frozen" (i.e., not changed during backpropagation). [2]
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.
In machine learning, a deep belief network (DBN) is a generative graphical model, or alternatively a class of deep neural network, composed of multiple layers of latent variables ("hidden units"), with connections between the layers but not between units within each layer.