enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Skew-symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Skew-symmetric_matrix

    If the characteristic of the field is 2, then a skew-symmetric matrix is the same thing as a symmetric matrix. The sum of two skew-symmetric matrices is skew-symmetric. A scalar multiple of a skew-symmetric matrix is skew-symmetric. The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero.

  3. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. [3] [4] Computing matrix products is a central operation in all computational applications of linear algebra.

  4. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    As it does not change at all, the Levi-Civita symbol is, by definition, a pseudotensor. As the Levi-Civita symbol is a pseudotensor, the result of taking a cross product is a pseudovector, not a vector. [5] Under a general coordinate change, the components of the permutation tensor are multiplied by the Jacobian of the transformation matrix ...

  5. Symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Symmetric_matrix

    If the matrix is symmetric indefinite, it may be still decomposed as = where is a permutation matrix (arising from the need to pivot), a lower unit triangular matrix, and is a direct sum of symmetric and blocks, which is called Bunch–Kaufman decomposition [6]

  6. Kronecker product - Wikipedia

    en.wikipedia.org/wiki/Kronecker_product

    In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.

  7. Pfaffian - Wikipedia

    en.wikipedia.org/wiki/Pfaffian

    In mathematics, the determinant of an m-by-m skew-symmetric matrix can always be written as the square of a polynomial in the matrix entries, a polynomial with integer coefficients that only depends on m. When m is odd, the polynomial is zero, and when m is even, it is a nonzero polynomial of degree m/2, and is

  8. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m , then their outer product is an n × m matrix.

  9. Frobenius inner product - Wikipedia

    en.wikipedia.org/wiki/Frobenius_inner_product

    Hadamard product (matrices) Hilbert–Schmidt inner product; Kronecker product; Matrix analysis; Matrix multiplication; Matrix norm; Tensor product of Hilbert spaces – the Frobenius inner product is the special case where the vector spaces are finite-dimensional real or complex vector spaces with the usual Euclidean inner product