Search results
Results from the WOW.Com Content Network
It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift. As originally conceived by Hendrik Wade Bode in the 1930s, the plot is an asymptotic approximation of the frequency response, using straight line segments .
Bode plot showing the concept of a decade: each major division on the horizontal axis is one decade Electronic frequency responses are often described in terms of "per decade". The example Bode plot shows a slope of −20 dB /decade in the stopband, which means that for every factor-of-ten increase in frequency (going from 10 rad/s to 100 rad/s ...
Magnitude transfer function of a bandpass filter with lower 3 dB cutoff frequency f 1 and upper 3 dB cutoff frequency f 2 Bode plot (a logarithmic frequency response plot) of any first-order low-pass filter with a normalized cutoff frequency at =1 and a unity gain (0 dB) passband.
Bode plot illustrating phase margin. In electronic amplifiers, the phase margin (PM) is the difference between the phase lag φ (< 0) and -180°, for an amplifier's output signal (relative to its input) at zero dB gain - i.e. unity gain, or that the output signal has the same amplitude as the input.
Magnitude response of a low pass filter with 6 dB per octave or 20 dB per decade roll-off. Measuring the frequency response typically involves exciting the system with an input signal and measuring the resulting output signal, calculating the frequency spectra of the two signals (for example, using the fast Fourier transform for discrete signals), and comparing the spectra to isolate the ...
Roll-off of a first-order low-pass filter is 20 dB/decade (≈6 dB/octave) A simple first-order network such as a RC circuit will have a roll-off of 20 dB/decade. This is a little over 6 dB/octave and is the more usual description given for this roll-off.
When viewed on a logarithmic Bode plot, the response slopes off linearly towards negative infinity. A first-order filter's response rolls off at −6 dB per octave (−20 dB per decade) (all first-order lowpass filters have the same normalized frequency response). A second-order filter decreases at −12 dB per octave, a third-order at −18 dB ...
The magnitude axis is in [Decibel] (dB). The phase axis is in either degrees or radians. The frequency axes are in a [logarithmic scale]. These are useful because for sinusoidal inputs, the output is the input multiplied by the value of the magnitude plot at the frequency and shifted by the value of the phase plot at the frequency.