Search results
Results from the WOW.Com Content Network
The negative slope of the indifference curve implies that the marginal rate of substitution is always positive; Complete, such that all points on an indifference curve are ranked equally preferred and ranked either more or less preferred than every other point not on the curve. So, with (2), no two curves can intersect (otherwise non-satiation ...
The indifference relation ~ is an equivalence relation. Thus, we have a quotient set S/~ of equivalence classes of S, which forms a partition of S. Each equivalence class is a set of packages that are equally preferred. If there are only two commodities, the equivalence classes can be graphically represented as indifference curves. Based on the ...
While an indifference curve mapping helps to solve the utility-maximizing problem of consumers, the isoquant mapping deals with the cost-minimization and profit and output maximisation problem of producers. Indifference curves further differ to isoquants, in that they cannot offer a precise measurement of utility, only how it is relevant to a ...
An example indifference curve is shown below: Each indifference curve is a set of points, each representing a combination of quantities of two goods or services, all of which combinations the consumer is equally satisfied with. The further a curve is from the origin, the greater is the level of utility.
A set of convex-shaped indifference curves displays convex preferences: Given a convex indifference curve containing the set of all bundles (of two or more goods) that are all viewed as equally desired, the set of all goods bundles that are viewed as being at least as desired as those on the indifference curve is a convex set.
Figure 4: Comparison of indifference curves of perfect and imperfect substitutes. Imperfect substitutes, also known as close substitutes, have a lesser level of substitutability, and therefore exhibit variable marginal rates of substitution along the consumer indifference curve. The consumption points on the curve offer the same level of ...
The indifference curves are L-shaped and their corners are determined by the weights. E.g., for the function min ( x 1 / 2 , x 2 / 3 ) {\displaystyle \min(x_{1}/2,x_{2}/3)} , the corners of the indifferent curves are at ( 2 t , 3 t ) {\displaystyle (2t,3t)} where t ∈ [ 0 , ∞ ) {\displaystyle t\in [0,\infty )} .
Whether indifference curves are primitive or derivable from utility functions; and; Whether indifference curves are convex. Assumptions are also made of a more technical nature, e.g. non-reversibility, saturation, etc. The pursuit of rigour is not always conducive to intelligibility. In this article indifference curves will be treated as primitive.