enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Refraction (sound) - Wikipedia

    en.wikipedia.org/wiki/Refraction_(sound)

    Refraction, in acoustics, comparable to the refraction of electromagnetic radiation, is the bending of sound propagation trajectories (rays) in inhomogeneous elastic media (gases, liquids, and solids) in which the wave velocity is a function of spatial coordinates. Bending of acoustic rays in layered inhomogeneous media occurs towards a layer ...

  3. Snell's law - Wikipedia

    en.wikipedia.org/wiki/Snell's_law

    Refraction of light at the interface between two media of different refractive indices, with n 2 > n 1. Since the velocity is lower in the second medium (v 2 < v 1), the angle of refraction θ 2 is less than the angle of incidence θ 1; that is, the ray in the higher-index medium is closer to the normal.

  4. Acoustic wave - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave

    An acoustic wave is a mechanical wave that transmits energy through the movements of atoms and molecules. Acoustic waves transmit through fluids in a longitudinal manner (movement of particles are parallel to the direction of propagation of the wave); in contrast to electromagnetic waves that transmit in transverse manner (movement of particles at a right angle to the direction of propagation ...

  5. Refraction - Wikipedia

    en.wikipedia.org/wiki/Refraction

    In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. [1] Refraction of light is the most commonly observed phenomenon, but other waves such as sound waves and water waves also experience refraction. How much a wave ...

  6. Physical acoustics - Wikipedia

    en.wikipedia.org/wiki/Physical_acoustics

    Physical acoustics is the area of acoustics and physics that studies interactions of acoustic waves with a gaseous, liquid or solid medium on macro- and micro-levels. This relates to the interaction of sound with thermal waves in crystals (), with light (), with electrons in metals and semiconductors (acousto-electric phenomena), with magnetic excitations in ferromagnetic crystals (), etc.

  7. Absorption (acoustics) - Wikipedia

    en.wikipedia.org/wiki/Absorption_(acoustics)

    The fraction of sound absorbed is governed by the acoustic impedances of both media and is a function of frequency and the incident angle. [2] Size and shape can influence the sound wave's behavior if they interact with its wavelength, giving rise to wave phenomena such as standing waves and diffraction .

  8. Angle of incidence (optics) - Wikipedia

    en.wikipedia.org/wiki/Angle_of_incidence_(optics)

    When dealing with a beam that is nearly parallel to a surface, it is sometimes more useful to refer to the angle between the beam and the surface tangent, rather than that between the beam and the surface normal. The 90-degree complement to the angle of incidence is called the grazing angle or glancing angle. Incidence at small grazing angles ...

  9. Acoustic metamaterial - Wikipedia

    en.wikipedia.org/wiki/Acoustic_metamaterial

    The speed of sound in the matrix is expressed as c = √ρ/μ with density ρ and shear modulus μ. Although linear elasticity is considered, the problem is mainly defined by shear waves directed at angles to the plane of the cylinders. [14] A phononic band gap occurs in association with the resonance of the split cylinder ring.