Search results
Results from the WOW.Com Content Network
A mixed hypothetical syllogism has two premises: one conditional statement and one statement that either affirms or denies the antecedent or consequent of that conditional statement. For example, If P, then Q. P. ∴ Q. In this example, the first premise is a conditional statement in which "P" is the antecedent and "Q" is the consequent.
The form of a modus tollens argument is a mixed hypothetical syllogism, with two premises and a conclusion: If P, then Q. Not Q. Therefore, not P. The first premise is a conditional ("if-then") claim, such as P implies Q. The second premise is an assertion that Q, the consequent of the conditional claim, is not the
Rules of inference are syntactical transform rules which one can use to infer a conclusion from a premise to create an argument. A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound.
In the 19th century, modifications to syllogism were incorporated to deal with disjunctive ("A or B") and conditional ("if A then B") statements. Immanuel Kant famously claimed, in Logic (1800), that logic was the one completed science, and that Aristotelian logic more or less included everything about logic that there was to know.
Disjunctive syllogism (sometimes abbreviated DS) has one of the same characteristics as modus tollens in that it contains a premise, then in a second premise it denies a statement, leading to the conclusion. In Disjunctive Syllogism, the first premise establishes two options.
A hypothetical syllogism is an inference that takes two conditional statements and forms a conclusion by combining the hypothesis of one statement with the conclusion of another. Here is the general form:
In propositional logic, material implication [1] [2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not-or and that either form can replace the other in logical proofs.
The material conditional (also known as material implication) is an operation commonly used in logic.When the conditional symbol is interpreted as material implication, a formula is true unless is true and is false.