Search results
Results from the WOW.Com Content Network
Rolling resistance, sometimes called rolling friction or rolling drag, is the force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. It is mainly caused by non-elastic effects; that is, not all the energy needed for deformation (or movement) of the wheel, roadbed, etc., is recovered when the pressure is removed.
The rolling resistance coefficient (RRC) indicates the amount of force required to overcome the hysteresis of the material as the tire rolls. Tire pressure, vehicle weight and velocity all play a role in how much force is lost to rolling resistance. The basic model equation for SAE J2452 is: Rolling Resistance (N / lbs) = (+ +) where: is the ...
Generally the force of rolling resistance is less than that associated with kinetic friction. [74] Typical values for the coefficient of rolling resistance are 0.001. [75] One of the most common examples of rolling resistance is the movement of motor vehicle tires on a road, a process which generates heat and sound as by-products. [76]
Hertz solved the contact problem in the absence of friction, for a simple geometry (curved surfaces with constant radii of curvature). Carter considered the rolling contact between a cylinder and a plane, as described above. A complete analytical solution is provided for the tangential traction.
Solving a model based on the Magic curve with high frequency can also be a problem, determined by how the input of the Pacejka curve is computed. The slipping velocity (difference between the velocity of the car and the velocity of the tire in the contact point) will change very quickly and the model becomes a stiff system (a system whose ...
where F is the rolling resistance force (shown in figure 1), r is the wheel radius, b is the rolling resistance coefficient or coefficient of rolling friction with dimension of length, and N is the normal force (equal to W, not R, as shown in figure 1). Equating the above two equations, and solving for b, gives b = Crr·r.
rolling friction. In the case of bodies capable of rolling, there is a particular type of friction, in which the sliding phenomenon, typical of dynamic friction, does not occur, but there is also a force that opposes the motion, which also excludes the case of static friction. This type of friction is called rolling friction.
The life of a rolling bearing is expressed as the number of revolutions or the number of operating hours at a given speed that the bearing is capable of enduring before the first sign of metal fatigue (also known as spalling) occurs on the race of the inner or outer ring, or on a rolling element. Calculating the endurance life of bearings is ...