enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    For the avoidance of ambiguity, zero will always be a valid possible constituent of "sums of two squares", so for example every square of an integer is trivially expressible as the sum of two squares by setting one of them to be zero. 1. The product of two numbers, each of which is a sum of two squares, is itself a sum of two squares.

  3. Sum of two squares theorem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_squares_theorem

    Therefore, the theorem states that it is expressible as the sum of two squares. Indeed, 2450 = 7 2 + 49 2. The prime decomposition of the number 3430 is 2 · 5 · 7 3. This time, the exponent of 7 in the decomposition is 3, an odd number. So 3430 cannot be written as the sum of two squares.

  4. Sum of squares - Wikipedia

    en.wikipedia.org/wiki/Sum_of_squares

    Legendre's three-square theorem states which numbers can be expressed as the sum of three squares; Jacobi's four-square theorem gives the number of ways that a number can be represented as the sum of four squares. For the number of representations of a positive integer as a sum of squares of k integers, see Sum of squares function.

  5. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    Diophantus shows how to solve this sum-of-squares problem for k = 4 (the solutions being u = 16/5 and v = 12/5). [29] Around 1637, Fermat wrote his Last Theorem in the margin of his copy of the Arithmetica next to Diophantus's sum-of-squares problem: [30] [31] [32]

  6. Lagrange's four-square theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_four-square_theorem

    For example, Zhi-Wei Sun [14] proved that each natural number can be written as a sum of four squares with some requirements on the choice of these four numbers. One may also wonder whether it is necessary to use the entire set of square integers to write each natural as the sum of four squares.

  7. Hilbert's seventeenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_seventeenth_problem

    A result of Albrecht Pfister [8] shows that a positive semidefinite form in n variables can be expressed as a sum of 2 n squares. [9] Dubois showed in 1967 that the answer is negative in general for ordered fields. [10] In this case one can say that a positive polynomial is a sum of weighted squares of rational functions with positive ...

  8. Legendre's three-square theorem - Wikipedia

    en.wikipedia.org/wiki/Legendre's_three-square...

    In particular, Gauss counted the number of solutions of the expression of an integer as a sum of three squares, and this is a generalisation of yet another result of Legendre, [7] whose proof is incomplete. This last fact appears to be the reason for later incorrect claims according to which Legendre's proof of the three-square theorem was ...

  9. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares.It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2]