Search results
Results from the WOW.Com Content Network
The plasticity index is the size of the range of water contents where the soil exhibits plastic properties. The PI is the difference between the liquid and plastic limits (PI = LL-PL). Soils with a high PI tend to be clay, those with a lower PI tend to be silt, and those with a PI of 0 (non-plastic) tend to have little or no silt or clay.
Plasticity index: 6 max N.P. 10 max 10 max 11 min 11 min 10 max 10 max 11 min 11 min 1: Usual types of significant constituent materials stone fragments, gravel and sand fine sand silty or clayey gravel and sand silty soils clayey soils General rating as a subgrade excellent to good fair to poor
The Unified Soil Classification System (USCS) is a soil classification system used in engineering and geology to describe the texture and grain size of a soil.The classification system can be applied to most unconsolidated materials, and is represented by a two-letter symbol.
Silts and clays are distinguished by the soils' Atterberg limits, and thus the soils are separated into "high-plasticity" and "low-plasticity" soils. Moderately organic soils are considered subdivisions of silts and clays and are distinguished from inorganic soils by changes in their plasticity properties (and Atterberg limits) on drying.
Plasticity in a crystal of pure metal is primarily caused by two modes of deformation in the crystal lattice: slip and twinning. Slip is a shear deformation which moves the atoms through many interatomic distances relative to their initial positions.
The Plasticity Index of a particular soil specimen is defined as the difference between the Liquid Limit and the Plastic Limit of the specimen; it is an indicator of how much water the soil particles in the specimen can absorb, and correlates with many engineering properties like permeability, compressibility, shear strength and others ...
In those conditions the consistency quality depends upon the clay content. In the wet state, the two qualities of stickiness and plasticity are assessed. A soil's resistance to fragmentation and crumbling is assessed in the dry state by rubbing the sample. Its resistance to shearing forces is assessed in the moist state by thumb and finger ...
The equations that govern the deformation of jointed rocks are the same as those used to describe the motion of a continuum: [13] ˙ + = ˙ = = ˙: + = where (,) is the mass density, ˙ is the material time derivative of , (,) = ˙ (,) is the particle velocity, is the particle displacement, ˙ is the material time derivative of , (,) is the Cauchy stress tensor, (,) is the body force density ...