Search results
Results from the WOW.Com Content Network
Quantum optical coherence tomography (Q-OCT) is an imaging technique that uses nonclassical (quantum) light sources to generate high-resolution images based on the Hong-Ou-Mandel effect (HOM). [1] Q-OCT is similar to conventional OCT but uses a fourth-order interferometer that incorporates two photodetectors rather than a second-order ...
Orch OR combines the Penrose–Lucas argument with Hameroff's hypothesis on quantum processing in microtubules. It proposes that when condensates in the brain undergo an objective wave function reduction, their collapse connects noncomputational decision-making to experiences embedded in spacetime's fundamental geometry.
Microtubule and tubulin metrics [1]. Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nm [2] and have an inner diameter between 11 and 15 nm. [3]
In 1903, Nikolai K. Koltsov proposed that the shape of cells was determined by a network of tubules that he termed the cytoskeleton. The concept of a protein mosaic that dynamically coordinated cytoplasmic biochemistry was proposed by Rudolph Peters in 1929 [12] while the term (cytosquelette, in French) was first introduced by French embryologist Paul Wintrebert in 1931.
Higher order coherence or n-th order coherence (for any positive integer n>1) extends the concept of coherence to quantum optics and coincidence experiments. [1] It is used to differentiate between optics experiments that require a quantum mechanical description from those for which classical fields are sufficient.
The discovery of the Hanbury Brown and Twiss effect – correlation of light upon coincidence – triggered Glauber's creation [23] of uniquely quantum coherence analysis. Classical optical coherence becomes a classical limit for first-order quantum coherence; higher degree of coherence leads to many phenomena in quantum optics.
As long as the number of particles of a quantum system is fixed the system can be described by a wave function, which contains all the information about the state of that system. This is the first quantization approach and historically Bose–Einstein and Fermi–Dirac correlations were derived through this wave function formalism.
In physics, coherence theory is the study of optical effects arising from partially coherent light and radio sources. Partially coherent sources are sources where the coherence time or coherence length are limited by bandwidth, by thermal noise, or by other effect. Many aspects of modern coherence theory are studied in quantum optics.