enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Centrifugal force - Wikipedia

    en.wikipedia.org/wiki/Centrifugal_force

    Centrifugal force is a fictitious force in Newtonian mechanics (also called an "inertial" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It appears to be directed radially away from the axis of rotation of the frame.

  3. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    The net acceleration is directed towards the interior of the circle (but does not pass through its center). The net acceleration may be resolved into two components: tangential acceleration and centripetal acceleration. Unlike tangential acceleration, centripetal acceleration is present in both uniform and non-uniform circular motion.

  4. Coriolis force - Wikipedia

    en.wikipedia.org/wiki/Coriolis_force

    In physics, the Coriolis force is an inertial (or fictitious) force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise (or counterclockwise) rotation, the force ...

  5. Rotating reference frame - Wikipedia

    en.wikipedia.org/wiki/Rotating_reference_frame

    In classical mechanics, the Euler acceleration (named for Leonhard Euler), also known as azimuthal acceleration [8] or transverse acceleration [9] is an acceleration that appears when a non-uniformly rotating reference frame is used for analysis of motion and there is variation in the angular velocity of the reference frame's axis. This article ...

  6. Artificial gravity - Wikipedia

    en.wikipedia.org/wiki/Artificial_gravity

    Artificial gravity, or rotational gravity, is thus the appearance of a centrifugal force in a rotating frame of reference (the transmission of centripetal acceleration via normal force in the non-rotating frame of reference), as opposed to the force experienced in linear acceleration, which by the equivalence principle is indistinguishable from ...

  7. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    Eliminating the angular velocity dθ/dt from this radial equation, [47] ¨ = +. which is the equation of motion for a one-dimensional problem in which a particle of mass μ is subjected to the inward central force −dV/dr and a second outward force, called in this context the (Lagrangian) centrifugal force (see centrifugal force#Other uses of ...

  8. Proper acceleration - Wikipedia

    en.wikipedia.org/wiki/Proper_acceleration

    The first "centrifugal acceleration" term depends only on the radial position r and not the velocity of our object, the second "Coriolis acceleration" term depends only on the object's velocity in the rotating frame v rot but not its position, and the third "Euler acceleration" term depends only on position and the rate of change of the frame's ...

  9. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Consequently, the acceleration is the second derivative of position, [7] often written . Position, when thought of as a displacement from an origin point, is a vector: a quantity with both magnitude and direction. [9]: 1 Velocity and acceleration are vector quantities as well. The mathematical tools of vector algebra provide the means to ...