enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Axiom of choice - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_choice

    In class theories such as Von Neumann–Bernays–Gödel set theory and Morse–Kelley set theory, there is an axiom called the axiom of global choice that is stronger than the axiom of choice for sets because it also applies to proper classes.

  3. Zermelo–Fraenkel set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo–Fraenkel_set_theory

    Von Neumann–Bernays–Gödel set theory (NBG) is a commonly used conservative extension of Zermelo–Fraenkel set theory that does allow explicit treatment of proper classes. There are many equivalent formulations of the axioms of Zermelo–Fraenkel set theory. Most of the axioms state the existence of particular sets defined from other sets.

  4. Von Neumann–Bernays–Gödel set theory - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann–Bernays...

    Classes have several uses in NBG: They produce a finite axiomatization of set theory. [4]They are used to state a "very strong form of the axiom of choice" [5] —namely, the axiom of global choice: There exists a global choice function defined on the class of all nonempty sets such that () for every nonempty set .

  5. Group structure and the axiom of choice - Wikipedia

    en.wikipedia.org/wiki/Group_Structure_and_the...

    The axiom of choice is an axiom of ZFC set theory which in one form states that every set can be wellordered. In ZF set theory, i.e. ZFC without the axiom of choice, the following statements are equivalent: For every nonempty set X there exists a binary operation • such that (X, •) is a group. [1] The axiom of choice is true.

  6. List of statements independent of ZFC - Wikipedia

    en.wikipedia.org/wiki/List_of_statements...

    The mathematical statements discussed below are provably independent of ZFC (the canonical axiomatic set theory of contemporary mathematics, consisting of the Zermelo–Fraenkel axioms plus the axiom of choice), assuming that ZFC is consistent. A statement is independent of ZFC (sometimes phrased "undecidable in ZFC") if it can neither be ...

  7. List of axioms - Wikipedia

    en.wikipedia.org/wiki/List_of_axioms

    Together with the axiom of choice (see below), these are the de facto standard axioms for contemporary mathematics or set theory. They can be easily adapted to analogous theories, such as mereology. Axiom of extensionality; Axiom of empty set; Axiom of pairing; Axiom of union; Axiom of infinity; Axiom schema of replacement; Axiom of power set ...

  8. Zermelo set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo_set_theory

    The axioms of Zermelo set theory are stated for objects, some of which (but not necessarily all) are sets, and the remaining objects are urelements and not sets. Zermelo's language implicitly includes a membership relation ∈, an equality relation = (if it is not included in the underlying logic), and a unary predicate saying whether an object is a set.

  9. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Even if a fixed model of set theory satisfies the axiom of choice, it is possible for an inner model to fail to satisfy the axiom of choice. For example, the existence of sufficiently large cardinals implies that there is an inner model satisfying the axiom of determinacy (and thus not satisfying the axiom of choice).