enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cellulose - Wikipedia

    en.wikipedia.org/wiki/Cellulose

    Many properties of cellulose depend on its chain length or degree of polymerization, the number of glucose units that make up one polymer molecule. Cellulose from wood pulp has typical chain lengths between 300 and 1700 units; cotton and other plant fibers as well as bacterial cellulose have chain lengths ranging from 800 to 10,000 units. [6]

  3. Bacterial cellulose - Wikipedia

    en.wikipedia.org/wiki/Bacterial_cellulose

    The synthesis of bacterial cellulose is a multistep process that involve two main mechanisms: the synthesis of uridine diphosphoglucose (UDPGIc), followed by the polymerization of glucose into long and unbranched chains (the β-1→4 glucan chain) by cellulose synthase. Specifics on the cellulose synthesis has been extensively documented.

  4. File:Chitin glucose and cellulose.svg - Wikipedia

    en.wikipedia.org/wiki/File:Chitin_glucose_and...

    English: 1.The transition between glucose and N-Acetylglucosamine 2. The polymerization of N-Acetylglucosamine to chitin 3.The polymerization of glucose to cellulose. Glucose changes depending on what form it takes, glucose is the basis of both chitin and cellulose and the only difference between the two types is what form glucose takes in each pol

  5. Cellulase - Wikipedia

    en.wikipedia.org/wiki/Cellulase

    Ribbon representation of the Streptomyces lividans β-1,4-endoglucanase catalytic domain - an example from the family 12 glycoside hydrolases [1]. Cellulase (EC 3.2.1.4; systematic name 4-β-D-glucan 4-glucanohydrolase) is any of several enzymes produced chiefly by fungi, bacteria, and protozoans that catalyze cellulolysis, the decomposition of cellulose and of some related polysaccharides:

  6. Biopolymer - Wikipedia

    en.wikipedia.org/wiki/Biopolymer

    Cellulose: Cellulose is very structured with stacked chains that result in stability and strength. The strength and stability comes from the straighter shape of cellulose caused by glucose monomers joined by glycogen bonds. The straight shape allows the molecules to pack closely.

  7. Glycoside hydrolase - Wikipedia

    en.wikipedia.org/wiki/Glycoside_hydrolase

    These enzymes have a variety of uses including degradation of plant materials (e.g., cellulases for degrading cellulose to glucose, which can be used for ethanol production), in the food industry (invertase for manufacture of invert sugar, amylase for production of maltodextrins), and in the paper and pulp industry (xylanases for removing ...

  8. Cellulosic sugars - Wikipedia

    en.wikipedia.org/wiki/Cellulosic_sugars

    Cellulosic sugars are derived from non-food biomass (e.g. wood, agricultural residues, municipal solid waste). [1] The biomass is primarily composed of carbohydrate polymers cellulose, hemicellulose, and an aromatic polymer (lignin). The hemicellulose is a polymer of mainly five-carbon sugars C 5 H 10 O 5 .

  9. Hemicellulose - Wikipedia

    en.wikipedia.org/wiki/Hemicellulose

    In contrast, each polymer of cellulose comprises 7,000–15,000 glucose molecules. [5] In addition, hemicelluloses may be branched polymers, while cellulose is unbranched. Hemicelluloses are embedded in the cell walls of plants, sometimes in chains that form a 'ground' – they bind with pectin to cellulose to form a network of cross-linked ...