Search results
Results from the WOW.Com Content Network
An ellipse may also be defined in terms of one focal point and a line outside the ellipse called the directrix: for all points on the ellipse, the ratio between the distance to the focus and the distance to the directrix is a constant.
A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...
In addition to the eccentricity (e), foci, and directrix, various geometric features and lengths are associated with a conic section. The principal axis is the line joining the foci of an ellipse or hyperbola, and its midpoint is the curve's center. A parabola has no center. The linear eccentricity (c) is the distance between the center and a ...
The ellipse thus generated has its second focus at the center of the directrix circle, and the ellipse lies entirely within the circle. For the parabola, the center of the directrix moves to the point at infinity (see Projective geometry). The directrix "circle" becomes a curve with zero curvature, indistinguishable from a straight line.
*The distance from a point, P, on the ellipse to a focus is always proportional to the distance to a vertical line, D, called the directrix. The constant of proportionality is the eccentricity, e. *The eccentricity is always between 0 and 1. At zero, the ellispe becomes a circle, at 1 the ellipse becomes a parabola. Greater than one, it is a ...
In an ellipse, the semi-major axis is the geometric mean of the distance from the center to either focus and the distance from the center to either directrix. The semi-minor axis of an ellipse runs from the center of the ellipse (a point halfway between and on the line running between the foci) to the edge of the ellipse. The semi-minor axis is ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The ratios e=f/a=a/d=PF/PD are always constant. *The eccentricity is always between 0 and 1. At zero, the ellispe becomes a circle, at 1 the ellipse becomes a parabola. Greater than one, it is a hyperbola. Other related images Ellipse Properties Showing Construction with string.svg Ellipse Properties of Directrix and String Construction.svg