Search results
Results from the WOW.Com Content Network
The pound-force is the product of one avoirdupois pound (exactly 0.45359237 kg) and the standard acceleration due to gravity, approximately 32.174049 ft/s 2 (9.80665 m/s 2).
See Weight for detail of mass/weight distinction and conversion. Avoirdupois is a system of mass based on a pound of 16 ounces, while Troy weight is the system of mass where 12 troy ounces equals one troy pound. The symbol g 0 is used to denote standard gravity in order to avoid confusion with the (upright) g symbol for gram.
Units for other physical quantities are derived from this set as needed. In English Engineering Units, the pound-mass and the pound-force are distinct base units, and Newton's Second Law of Motion takes the form = where is the acceleration in ft/s 2 and g c = 32.174 lb·ft/(lbf·s 2).
In unit systems where force is a derived unit, like in SI units, g c is equal to 1. In unit systems where force is a primary unit, like in imperial and US customary measurement systems , g c may or may not equal 1 depending on the units used, and value other than 1 may be required to obtain correct results. [ 2 ]
The slug is a derived unit of mass in a weight-based system of measures, most notably within the British Imperial measurement system and the United States customary measures system. Systems of measure either define mass and derive a force unit or define a base force and derive a mass unit [ 1 ] (cf. poundal , a derived unit of force in a mass ...
The poundal is defined as the force necessary to accelerate an object of one-pound mass at 1 ft/s 2, and is equivalent to about 1/32.2 of a pound-force. The slug is defined as the amount of mass that accelerates at 1 ft/s 2 when one pound-force is exerted on it, and is equivalent to about 32.2 pounds (mass).
The conversion for the poundal is given by 1 pdl = 1 lb·ft/s 2 = 0.138 254 954 376 N (precisely). [1] To convert between the absolute and gravitational FPS systems one needs to fix the standard acceleration g which relates the pound to the pound-force. [citation needed] =
The thrust-to-weight ratio is usually calculated from initial gross weight at sea level on earth [6] and is sometimes called thrust-to-Earth-weight ratio. [7] The thrust-to-Earth-weight ratio of a rocket or rocket-propelled vehicle is an indicator of its acceleration expressed in multiples of earth's gravitational acceleration, g 0. [5]