Search results
Results from the WOW.Com Content Network
Heredity of phenotypic traits: a father and son with prominent ears and crowns. DNA structure. Bases are in the centre, surrounded by phosphate–sugar chains in a double helix. In humans, eye color is an example of an inherited characteristic: an individual might inherit the "brown-eye trait" from one of the parents. [1]
Mendel studied "trait inheritance", patterns in the way traits are handed down from parents to offspring over time. He observed that organisms (pea plants) inherit traits by way of discrete "units of inheritance". This term, still used today, is a somewhat ambiguous definition of what is referred to as a gene.
Autosomal traits are associated with a single gene on an autosome (non-sex chromosome)—they are called "dominant" because a single copy—inherited from either parent—is enough to cause this trait to appear. This often means that one of the parents must also have the same trait, unless it has arisen due to an unlikely new mutation.
Some traits are inherited through genes, which is the reason why tall and thin people tend to have tall and thin children. Other traits come from interactions between genes and the environment, so a child who inherited the tendency of being tall will still be short if poorly nourished. The way our genes and environment interact to produce a ...
Mendel studied "trait inheritance", patterns in the way traits are handed down from parents to offspring. He observed that organisms (most famously pea plants) inherit traits by way of discrete "units of inheritance". This term, still used today, is a somewhat ambiguous definition of what is referred to as a gene. Much of Mendel's work with ...
Genetic variation can be identified at many levels. Identifying genetic variation is possible from observations of phenotypic variation in either quantitative traits (traits that vary continuously and are coded for by many genes, e.g., leg length in dogs) or discrete traits (traits that fall into discrete categories and are coded for by one or a few genes, e.g., white, pink, or red petal color ...
A phenotypic trait is an obvious, observable, and measurable characteristic of an organism; it is the expression of genes in an observable way. An example of a phenotypic trait is a specific hair color or eye color. Underlying genes, that make up the genotype, determine the hair color, but the hair color observed is the phenotype.
In an individual, the allelic genes that are expressed can be either homozygous, meaning the same, or heterozygous, meaning different. Many pairs of alleles have differing effects that are portrayed in an offspring's phenotype and genotype. The phenotype is a general term that defines an individual's visible, physical traits.