Search results
Results from the WOW.Com Content Network
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
The intuition of the delta method is that any such g function, in a "small enough" range of the function, can be approximated via a first order Taylor series (which is basically a linear function). If the random variable is roughly normal then a linear transformation of it is also normal.
That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...
4. The solution is to expand the function z in a second-order Taylor series; the expansion is done around the mean values of the several variables x. (Usually the expansion is done to first order; the second-order terms are needed to find the bias in the mean. Those second-order terms are usually dropped when finding the variance; see below). 5.
That is, if we have a value for the cumulative distribution function, (), but do not know the x needed to obtain the (), we can use Newton's method to find x, and use the Taylor series expansion above to minimize the number of computations.
The approximation ( +) and its equivalent form + ( + ( +)) can be obtained by rearranging Stirling's extended formula and observing a coincidence between the resultant power series and the Taylor series expansion of the hyperbolic sine function.
For the second-order approximations of the third central moment as well as for the derivation of all higher-order approximations see Appendix D of Ref. [3] Taking into account the quadratic terms of the Taylor series and the third moments of the input variables is referred to as second-order third-moment method. [4]