enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...

  3. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.

  4. Error function - Wikipedia

    en.wikipedia.org/wiki/Error_function

    For iterative calculation of the above series, the following alternative formulation may be useful: ⁡ = = (= (+)) = = + = because ⁠ −(2k − 1)z 2 / k(2k + 1) ⁠ expresses the multiplier to turn the k th term into the (k + 1) th term (considering z as the first term).

  5. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    The Taylor series of f will converge in some interval in which all its derivatives are bounded and do not grow too fast as k goes to infinity. (However, even if the Taylor series converges, it might not converge to f, as explained below; f is then said to be non-analytic.) One might think of the Taylor series

  6. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables ⁡ (+) = ⁡ + ⁡ + ⁡ (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...

  7. Experimental uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Experimental_uncertainty...

    Even if the PDF can be found, finding the moments (above) can be difficult. 4. The solution is to expand the function z in a second-order Taylor series; the expansion is done around the mean values of the several variables x. (Usually the expansion is done to first order; the second-order terms are needed to find the bias in the mean.

  8. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    This formula can be obtained by Taylor series expansion: (+) = + ′ ()! ″ ()! () +. The complex-step derivative formula is only valid for calculating first-order derivatives. A generalization of the above for calculating derivatives of any order employs multicomplex numbers , resulting in multicomplex derivatives.

  9. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    That is, if we have a value for the cumulative distribution function, (), but do not know the x needed to obtain the (), we can use Newton's method to find x, and use the Taylor series expansion above to minimize the number of computations.