enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zermelo–Fraenkel set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo–Fraenkel_set_theory

    The modern study of set theory was initiated by Georg Cantor and Richard Dedekind in the 1870s. However, the discovery of paradoxes in naive set theory, such as Russell's paradox, led to the desire for a more rigorous form of set theory that was free of these paradoxes. In 1908, Ernst Zermelo proposed the first axiomatic set theory, Zermelo set ...

  3. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    In modern set theory, it is common to restrict attention to the von Neumann universe of pure sets, and many systems of axiomatic set theory are designed to axiomatize the pure sets only. There are many technical advantages to this restriction, and little generality is lost, because essentially all mathematical concepts can be modeled by pure sets.

  4. Axiom of regularity - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_regularity

    Axiomatic set theory. Proceedings of Symposia in Pure Mathematics. Vol. 13. Part II, pp. 207–214. Skolem, Thoralf (1923). Axiomatized set theory. Reprinted in From Frege to Gödel, van Heijenoort, 1967, in English translation by Stefan Bauer-Mengelberg, pp. 291–301. Suppes, Patrick (1972) [first published 1960]. Axiomatic Set Theory. Dover.

  5. Ackermann set theory - Wikipedia

    en.wikipedia.org/wiki/Ackermann_set_theory

    In mathematics and logic, Ackermann set theory (AST, also known as / [1]) is an axiomatic set theory proposed by Wilhelm Ackermann in 1956. [2] AST differs from Zermelo–Fraenkel set theory (ZF) in that it allows proper classes, that is, objects that are not sets, including a class of all sets. It replaces several of the standard ZF axioms for ...

  6. Morse–Kelley set theory - Wikipedia

    en.wikipedia.org/wiki/Morse–Kelley_set_theory

    In the foundations of mathematics, Morse–Kelley set theory (MK), Kelley–Morse set theory (KM), Morse–Tarski set theory (MT), Quine–Morse set theory (QM) or the system of Quine and Morse is a first-order axiomatic set theory that is closely related to von Neumann–Bernays–Gödel set theory (NBG).

  7. Axiom of extensionality - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_extensionality

    The axiom of extensionality, [1] [2] also called the axiom of extent, [3] [4] is an axiom used in many forms of axiomatic set theory, such as Zermelo–Fraenkel set theory. [5] [6] The axiom defines what a set is. [1] Informally, the axiom means that the two sets A and B are equal if and only if A and B have the same members.

  8. Zermelo set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo_set_theory

    The axioms of Zermelo set theory are stated for objects, some of which (but not necessarily all) are sets, and the remaining objects are urelements and not sets. Zermelo's language implicitly includes a membership relation ∈, an equality relation = (if it is not included in the underlying logic), and a unary predicate saying whether an object is a set.

  9. Axiom of empty set - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_empty_set

    Furthermore, one sometimes considers set theories in which there are no infinite sets, and then the axiom of empty set may still be required. However, any axiom of set theory or logic that implies the existence of any set will imply the existence of the empty set, if one has the axiom schema of separation. This is true, since the empty set is a ...