Search results
Results from the WOW.Com Content Network
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
Google Forms is a survey administration software included as part of the free, web-based Google Docs Editors suite offered by Google. The service also includes Google Docs, Google Sheets, Google Slides, Google Drawings, Google Sites, and Google Keep. Google Forms is only available as a web application. The app allows users to create and edit ...
1900: Karl Pearson develops the chi squared test to determine "whether a given form of frequency curve will effectively describe the samples drawn from a given population." Thus the null hypothesis is that a population is described by some distribution predicted by theory.
For two matched samples, it is a paired difference test like the paired Student's t-test (also known as the "t-test for matched pairs" or "t-test for dependent samples"). The Wilcoxon test is a good alternative to the t-test when the normal distribution of the differences between paired individuals cannot be assumed. Instead, it assumes a ...
Most test statistics have the form t = Z/s, where Z and s are functions of the data. Z may be sensitive to the alternative hypothesis (i.e., its magnitude tends to be larger when the alternative hypothesis is true), whereas s is a scaling parameter that allows the distribution of t to be determined. As an example, in the one-sample t-test
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
Test statistic is a quantity derived from the sample for statistical hypothesis testing. [1] A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a data-set that reduces the data to one value that can be used to perform the hypothesis test.
Difference between Z-test and t-test: Z-test is used when sample size is large (n>50), or the population variance is known. t-test is used when sample size is small (n<50) and population variance is unknown. There is no universal constant at which the sample size is generally considered large enough to justify use of the plug-in test. Typical ...