enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Restriction (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Restriction_(mathematics)

    Let : be a function from a set to a set . If a set is a subset of , then the restriction of to is the function [1] |: given by | = for . Informally, the restriction of to is the same function as , but is only defined on .

  3. Restricted root system - Wikipedia

    en.wikipedia.org/wiki/Restricted_root_system

    In mathematics, restricted root systems, sometimes called relative root systems, are the root systems associated with a symmetric space. The associated finite reflection group is called the restricted Weyl group. The restricted root system of a symmetric space and its dual can be identified.

  4. For example, on the International Space Station the Earth's gravity is nearly 90% as strong as at the surface. Objects orbiting in space would not remain in orbit if not for the gravitational force, and gravitational fields extend even into the depths of intergalactic space. [5] [6] [7] The dark side of the Moon illuminated by the Sun.

  5. Subspace topology - Wikipedia

    en.wikipedia.org/wiki/Subspace_topology

    In the following, represents the real numbers with their usual topology. The subspace topology of the natural numbers, as a subspace of , is the discrete topology.; The rational numbers considered as a subspace of do not have the discrete topology ({0} for example is not an open set in because there is no open subset of whose intersection with can result in only the singleton {0}).

  6. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    In the given example, there are 12 = 2(3!) permutations with property P 1, 6 = 3! permutations with property P 2 and no permutations have properties P 3 or P 4 as there are no restrictions for these two elements. The number of permutations satisfying the restrictions is thus: 4! − (12 + 6 + 0 + 0) + (4) = 24 − 18 + 4 = 10.

  7. Space (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Space_(mathematics)

    A straight line in the projective space corresponds to a two-dimensional linear subspace of the (n+1)-dimensional linear space. More generally, a k-dimensional projective subspace of the projective space corresponds to a (k+1)-dimensional linear subspace of the (n+1)-dimensional linear space, and is isomorphic to the k-dimensional projective space.

  8. Retraction (topology) - Wikipedia

    en.wikipedia.org/wiki/Retraction_(topology)

    A space is an absolute neighborhood retract for the class , written ⁡ (), if is in and whenever is a closed subset of a space in , is a neighborhood retract of . Various classes C {\displaystyle {\mathcal {C}}} such as normal spaces have been considered in this definition, but the class M {\displaystyle {\mathcal {M}}} of metrizable spaces ...

  9. Unbounded operator - Wikipedia

    en.wikipedia.org/wiki/Unbounded_operator

    In contrast to bounded operators, unbounded operators on a given space do not form an algebra, nor even a linear space, because each one is defined on its own domain. The term "operator" often means "bounded linear operator", but in the context of this article it means "unbounded operator", with the reservations made above.