enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    By converting a number less than n! to factorial representation, one obtains a sequence of n digits that can be converted to a permutation of n elements in a straightforward way, either using them as Lehmer code or as inversion table [1] representation; in the former case the resulting map from integers to permutations of n elements lists them ...

  3. List of permutation topics - Wikipedia

    en.wikipedia.org/wiki/List_of_permutation_topics

    Enumerations of specific permutation classes; Factorial. Falling factorial; Permutation matrix. Generalized permutation matrix; Inversion (discrete mathematics) Major index; Ménage problem; Permutation graph; Permutation pattern; Permutation polynomial; Permutohedron; Rencontres numbers; Robinson–Schensted correspondence; Sum of permutations ...

  4. Derangement - Wikipedia

    en.wikipedia.org/wiki/Derangement

    This is the limit of the probability that a randomly selected permutation of a large number of objects is a derangement. The probability converges to this limit extremely quickly as n increases, which is why !n is the nearest integer to n!/e. The above semi-log graph shows that the derangement graph lags the permutation graph by an almost ...

  5. Permutation - Wikipedia

    en.wikipedia.org/wiki/Permutation

    Converting successive natural numbers to the factorial number system produces those sequences in lexicographic order (as is the case with any mixed radix number system), and further converting them to permutations preserves the lexicographic ordering, provided the Lehmer code interpretation is used (using inversion tables, one gets a different ...

  6. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    The word "factorial" (originally French: factorielle) was first used in 1800 by Louis François Antoine Arbogast, [18] in the first work on Faà di Bruno's formula, [19] but referring to a more general concept of products of arithmetic progressions. The "factors" that this name refers to are the terms of the product formula for the factorial. [20]

  7. Eulerian number - Wikipedia

    en.wikipedia.org/wiki/Eulerian_number

    The permutations of the multiset {,,,, …,,} which have the property that for each k, all the numbers appearing between the two occurrences of k in the permutation are greater than k are counted by the double factorial number ()!!.

  8. Permutation codes - Wikipedia

    en.wikipedia.org/wiki/Permutation_Codes

    A main problem in permutation codes is to determine the value of (,), where (,) is defined to be the maximum number of codewords in a permutation code of length and minimum distance . There has been little progress made for 4 ≤ d ≤ n − 1 {\displaystyle 4\leq d\leq n-1} , except for small lengths.

  9. Stirling numbers of the first kind - Wikipedia

    en.wikipedia.org/wiki/Stirling_numbers_of_the...

    A two-sum formula can be obtained using one of the symmetric formulae for Stirling numbers in conjunction with the explicit formula for Stirling numbers of the second kind. [ n k ] = ∑ j = n 2 n − k ( j − 1 k − 1 ) ( 2 n − k j ) ∑ m = 0 j − n ( − 1 ) m + n − k m j − k m !