Search results
Results from the WOW.Com Content Network
CMOS inverter (a NOT logic gate). Complementary metal–oxide–semiconductor (CMOS, / ˈ s iː m ɒ s /, also US: /-ɔː s / [1]) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. [2]
The first CMOS family of logic integrated circuits was introduced by RCA as CD4000 COS/MOS, the 4000 series, in 1968. Initially CMOS logic was slower than LS-TTL. However, because the logic thresholds of CMOS were proportional to the power supply voltage, CMOS devices were well-adapted to battery-operated systems with simple power supplies.
Later the decreased cost of the CMOS technology allowed the same devices to be fabricated using it, adding the letter "C" to the device numbers (27xx(x) are n-MOS and 27Cxx(x) are CMOS). While parts of the same size from different manufacturers are compatible in read mode, different manufacturers added different and sometimes multiple ...
2009 Nobel Prize in Physics laureates George E. Smith and Willard Boyle, 2009, photographed on a Nikon D80, which uses a CCD sensor. The basis for the CCD is the metal–oxide–semiconductor (MOS) structure, [2] with MOS capacitors being the basic building blocks of a CCD, [1] [3] and a depleted MOS structure used as the photodetector in early CCD devices.
When the battery fails, BIOS settings are reset to their defaults. The battery can also be used to power a real time clock (RTC) and the RTC, NVRAM and battery may be integrated into a single component. The name CMOS memory comes from the technology used to make the memory, which is easier to say than NVRAM. [3]
The CMOS (complementary metal oxide semiconductor) process technology is the basis for modern digital integrated circuits. This process technology uses an arrangement where the (usually "enhancement-mode") p-channel MOSFET and n-channel MOSFET are connected in series such that when one is on, the other is off.
Complementary metal-oxide semiconductor (CMOS) technology has been the industry standard for implementing Very Large Scale Integrated (VLSI) devices for the last four decades, mainly due to the consequences of miniaturization of such devices (i.e. increasing switching speeds, increasing complexity and decreasing power consumption). Quantum ...
In semiconductor design, standard-cell methodology is a method of designing application-specific integrated circuits (ASICs) with mostly digital-logic features. Standard-cell methodology is an example of design abstraction, whereby a low-level very-large-scale integration layout is encapsulated into an abstract logic representation (such as a NAND gate).