enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lattice energy - Wikipedia

    en.wikipedia.org/wiki/Lattice_energy

    Some chemistry textbooks [3] as well as the widely used CRC Handbook of Chemistry and Physics [4] define lattice energy with the opposite sign, i.e. as the energy required to convert the crystal into infinitely separated gaseous ions in vacuum, an endothermic process. Following this convention, the lattice energy of NaCl would be +786 kJ/mol.

  3. Flory–Huggins solution theory - Wikipedia

    en.wikipedia.org/wiki/Flory–Huggins_solution...

    where is the coordination number, the number of nearest neighbors for a lattice site, each one occupied either by one chain segment or a solvent molecule. That is, x N 2 {\displaystyle xN_{2}} is the total number of polymer segments (monomers) in the solution, so x N 2 z {\displaystyle xN_{2}z} is the number of nearest-neighbor sites to all the ...

  4. Born–Landé equation - Wikipedia

    en.wikipedia.org/wiki/Born–Landé_equation

    The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound.In 1918 [1] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.

  5. Number density - Wikipedia

    en.wikipedia.org/wiki/Number_density

    In SI units, number density is measured in m −3, although cm −3 is often used. However, these units are not quite practical when dealing with atoms or molecules of gases, liquids or solids at room temperature and atmospheric pressure, because the resulting numbers are extremely large (on the order of 10 20).

  6. Kapustinskii equation - Wikipedia

    en.wikipedia.org/wiki/Kapustinskii_equation

    The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%. Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known.

  7. Avogadro constant - Wikipedia

    en.wikipedia.org/wiki/Avogadro_constant

    The Avogadro constant, commonly denoted N A [1] or L, [2] is an SI defining constant with an exact value of 6.022 140 76 × 10 23 mol −1 (reciprocal moles). [3] [4] It is this defined number of constituent particles (usually molecules, atoms, ions, or ion pairs—in general, entities) per mole and used as a normalization factor in relating the amount of substance, n(X), in a sample of a ...

  8. Madelung constant - Wikipedia

    en.wikipedia.org/wiki/Madelung_constant

    The electrostatic interaction model of ions in solids has thus been extended to a point multipole concept that also includes higher multipole moments like dipoles, quadrupoles etc. [8] [9] [10] These concepts require the determination of higher order Madelung constants or so-called electrostatic lattice constants.

  9. Enthalpy change of solution - Wikipedia

    en.wikipedia.org/wiki/Enthalpy_change_of_solution

    The energy released by the solvation of the ammonium ions and nitrate ions is less than the energy absorbed in breaking up the ammonium nitrate ionic lattice and the attractions between water molecules. Dissolving potassium hydroxide is exothermic, as more energy is released during solvation than is used in breaking up the solute and solvent.