Search results
Results from the WOW.Com Content Network
In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication P → Q, the converse is Q → P. For the categorical proposition All S are P, the converse is All P are S. Either way, the truth of the converse is generally independent from that of ...
In mathematics, the converse of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of ...
The converse is "If a polygon has four sides, then it is a quadrilateral. " Again, in this case, unlike the last example, the converse of the statement is true. The negation is " There is at least one quadrilateral that does not have four sides.
Converse (logic), the result of reversing the two parts of a definite or implicational statement Converse implication, the converse of a material implication; Converse nonimplication, a logical connective which is the negation of the converse implication; Converse (semantics), pairs of words that refer to a relationship from opposite points of view
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
The converse of strong. well-defined Accurately and precisely described or specified. For example, sometimes a definition relies on a choice of some object; the result of the definition must then be independent of this choice.
The converse (inverse) of a transitive relation is always transitive. For instance, knowing that "is a subset of" is transitive and "is a superset of" is its converse, one can conclude that the latter is transitive as well. The intersection of two transitive relations is always transitive. [4]
The inverse and the converse of a conditional are logically equivalent to each other, just as the conditional and its contrapositive are logically equivalent to each other. [1] But the inverse of a conditional cannot be inferred from the conditional itself (e.g., the conditional might be true while its inverse might be false [2]). For example ...