Search results
Results from the WOW.Com Content Network
In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.
Using the fact that (,) =, the generalized Marcum Q-function can alternatively be defined as a finite integral as (,) = (+) ().However, it is preferable to have an integral representation of the Marcum Q-function such that (i) the limits of the integral are independent of the arguments of the function, (ii) and that the limits are finite, (iii) and that the integrand is a Gaussian function ...
Q-learning can identify an optimal action-selection policy for any given finite Markov decision process, given infinite exploration time and a partly random policy. [2] "Q" refers to the function that the algorithm computes: the expected reward—that is, the quality—of an action taken in a given state. [3]
Q.E.D.-- Qallalin tiles-- Qashani-- QCMA-- QED manifesto-- QED project-- QIP (complexity)-- QMA-- QR algorithm-- QR decomposition-- QST (genetics)-- Quad-edge ...
In mathematics and statistics, Q-distribution or q-distribution may refer to: Q-function, the tail distribution function of the standard normal distribution; The studentized range distribution, which is the distribution followed by the q-statistic (lowercase Q; the Q-statistic with uppercase Q, from the Box-Pierce test or Ljung-Box test, follows the chi-squared distribution)
The Husimi Q distribution (called Q-function in the context of quantum optics) is one of the simplest distributions of quasiprobability in phase space. It is constructed in such a way that observables written in anti-normal order follow the optical equivalence theorem. This means that it is essentially the density matrix put into normal order ...
This is an analytic function of q in the interior of the unit disk, and can also be considered as a formal power series in q. The special case ϕ ( q ) = ( q ; q ) ∞ = ∏ k = 1 ∞ ( 1 − q k ) {\displaystyle \phi (q)=(q;q)_{\infty }=\prod _{k=1}^{\infty }(1-q^{k})} is known as Euler's function , and is important in combinatorics , number ...
The earliest q-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century. [1] q-analogs are most frequently studied in the mathematical fields of combinatorics and special functions. In these settings, the limit q → 1 is often formal, as q is often discrete-valued (for example, it may represent a ...