Search results
Results from the WOW.Com Content Network
Free-electron laser: A broad wavelength range (0.1 nm - several mm); a single FEL may be tunable over a wavelength range Relativistic electron beam: Atmospheric research, material science, medical applications. CO₂ gas dynamic laser: Several lines around 10.5 μm; other frequencies may be possible with different gas mixtures
Laser rods (from left to right): Ruby, alexandrite, Er:YAG, Nd:YAG. A solid-state laser is a laser that uses a gain medium that is a solid, rather than a liquid as in dye lasers or a gas as in gas lasers. [1] Semiconductor-based lasers are also in the solid state, but are generally considered as a separate class from solid-state lasers, called ...
As electron kinetic energy and undulator parameters can be adapted as desired, free-electron lasers are tunable and can be built for a wider frequency range than any other type of laser, [3] currently ranging in wavelength from microwaves, through terahertz radiation and infrared, to the visible spectrum, ultraviolet, and X-ray. [4]
Wavelengths of commercially available lasers. Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The color codifies the type of laser material (see the figure description for more details).
Alexandrite results from small scale replacement of aluminium by chromium ions in the crystal structure, which causes intense absorption of light over a narrow range of wavelengths in the yellow region (520–620 nm) [10] [11] of the visible light spectrum. [10]
The transmission of an etalon as a function of wavelength. A high-finesse etalon (red line) shows sharper peaks and lower transmission minima than a low-finesse etalon (blue). The free spectral range is Δλ (shown above the graph). The FSR is related to the full-width half-maximum δλ of any one transmission band by a quantity known as the ...
Laser rods (from left to right): Ruby, Alexandrite, Er:YAG, Nd:YAG The active laser medium (also called a gain medium or lasing medium ) is the source of optical gain within a laser . The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from a higher energy state previously ...
Laser linewidth from high-power high-gain pulsed laser oscillators, comprising line narrowing optics, is a function of the geometrical and dispersive features of the laser cavity. [29] To a first approximation the laser linewidth, in an optimized cavity, is directly proportional to the beam divergence of the emission multiplied by the inverse ...