Search results
Results from the WOW.Com Content Network
In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [9] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11).
The long real line pastes together ℵ 1 * + ℵ 1 copies of the real line plus a single point (here ℵ 1 * denotes the reversed ordering of ℵ 1) to create an ordered set that is "locally" identical to the real numbers, but somehow longer; for instance, there is an order-preserving embedding of ℵ 1 in the long real line but not in the real ...
In mathematics, a negative number is the opposite (mathematics) of a positive real number. [1] Equivalently, a negative number is a real number that is less than zero . Negative numbers are often used to represent the magnitude of a loss or deficiency.
Computable number: A real number whose digits can be computed by some algorithm. Period: A number which can be computed as the integral of some algebraic function over an algebraic domain. Definable number: A real number that can be defined uniquely using a first-order formula with one free variable in the language of set theory.
The plus and minus symbols are used to show the sign of a number. In mathematics, the sign of a real number is its property of being either positive, negative, or 0.Depending on local conventions, zero may be considered as having its own unique sign, having no sign, or having both positive and negative sign.
Denotes the additive inverse and is read as minus, the negative of, or the opposite of; for example, –2. 3. ... Floor function: if x is a real number, ...
Informally, a field is a set, along with two operations defined on that set: an addition operation written as a + b, and a multiplication operation written as a ⋅ b, both of which behave similarly as they behave for rational numbers and real numbers, including the existence of an additive inverse −a for all elements a, and of a multiplicative inverse b −1 for every nonzero element b.
If both numbers are positive, then the inequality relation between the multiplicative inverses is opposite of that between the original numbers. More specifically, for any non-zero real numbers a and b that are both positive (or both negative):