enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is ...

  3. Frieze group - Wikipedia

    en.wikipedia.org/wiki/Frieze_group

    The translations here arise from the glide reflections, so this group is generated by a glide reflection and either a rotation or a vertical reflection. p11m [∞ +,2] C ∞h Z ∞ ×Dih 1 ∞* jump (THG) Translations, Horizontal reflections, Glide reflections: This group is generated by a translation and the reflection in the horizontal axis.

  4. Glide reflection - Wikipedia

    en.wikipedia.org/wiki/Glide_reflection

    A typical example of glide reflection in everyday life would be the track of footprints left in the sand by a person walking on a beach. Frieze group nr. 6 (glide-reflections, translations and rotations) is generated by a glide reflection and a rotation about a point on the line of reflection. It is isomorphic to a semi-direct product of Z and C 2.

  5. Rigid transformation - Wikipedia

    en.wikipedia.org/wiki/Rigid_transformation

    (A reflection would not preserve handedness; for instance, it would transform a left hand into a right hand.) To avoid ambiguity, a transformation that preserves handedness is known as a rigid motion, a Euclidean motion, or a proper rigid transformation. In dimension two, a rigid motion is either a translation or a rotation.

  6. Orthogonal transformation - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_transformation

    Transformations with reflection are represented by matrices with a determinant of −1. This allows the concept of rotation and reflection to be generalized to higher dimensions. In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis) of an orthogonal transformation is an orthogonal matrix.

  7. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    For example, in 2-space n = 2, a rotation by angle θ has eigenvalues λ = e iθ and λ = e −iθ, so there is no axis of rotation except when θ = 0, the case of the null rotation. In 3-space n = 3 , the axis of a non-null proper rotation is always a unique line, and a rotation around this axis by angle θ has eigenvalues λ = 1, e iθ , e ...

  8. Transformation geometry - Wikipedia

    en.wikipedia.org/wiki/Transformation_geometry

    An exploration of transformation geometry often begins with a study of reflection symmetry as found in daily life. The first real transformation is reflection in a line or reflection against an axis. The composition of two reflections results in a rotation when the lines intersect, or a translation when they are parallel.

  9. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    Rotation of an object in two dimensions around a point O. Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point.