Search results
Results from the WOW.Com Content Network
Cyclic numbers are related to the recurring digital representations of unit fractions.A cyclic number of length L is the digital representation of . 1/(L + 1).Conversely, if the digital period of 1/p (where p is prime) is
A cyclic number [1] [2] is a natural number n such that n and φ(n) are coprime. Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic if and only if any group of order n is cyclic. [3] Any prime number is clearly cyclic. All cyclic numbers are square-free. [4] Let n = p 1 p 2 …
A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n, φ(n)) = 1. [13] The sequence of cyclic numbers include all primes, but some are composite such as 15. However, all cyclic numbers are odd except 2. The cyclic numbers are:
Cyclic number, a number such that cyclic permutations of the digits are successive multiples of the number; Cyclic order, a ternary relation defining a way to arrange a set of objects in a circle; Cyclic permutation, a permutation with one nontrivial orbit; Cyclic polygon, a polygon which can be given a circumscribed circle
A cyclic permutation consisting of a single 8-cycle. There is not widespread consensus about the precise definition of a cyclic permutation. Some authors define a permutation σ of a set X to be cyclic if "successive application would take each object of the permuted set successively through the positions of all the other objects", [1] or, equivalently, if its representation in cycle notation ...
A cyclic group Z n is a group all of whose elements are powers of a particular element a where a n = a 0 = e, the identity. A typical realization of this group is as the complex n th roots of unity. Sending a to a primitive root of unity gives an isomorphism between the two. This can be done with any finite cyclic group.
By definition, the group is cyclic if and only if it has a generator g (a generating set {g} of size one), that is, the powers ,,, …, give all possible residues modulo n coprime to n (the first () powers , …, give each exactly once).
The trivial group is the only group of order one, and the cyclic group C p is the only group of order p. There are exactly two groups of order p 2, both abelian, namely C p 2 and C p × C p. For example, the cyclic group C 4 and the Klein four-group V 4 which is C 2 × C 2 are both 2-groups of order 4.