Search results
Results from the WOW.Com Content Network
Modular multiplicative inverses are used to obtain a solution of a system of linear congruences that is guaranteed by the Chinese Remainder Theorem. For example, the system X ≡ 4 (mod 5) X ≡ 4 (mod 7) X ≡ 6 (mod 11) has common solutions since 5,7 and 11 are pairwise coprime. A solution is given by
Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...
Some calculators have a mod() function button, and many programming languages have a similar function, expressed as mod(a, n), for example. Some also support expressions that use "%", "mod", or "Mod" as a modulo or remainder operator, such as a % n or a mod n. For environments lacking a similar function, any of the three definitions above can ...
In number theory and computer science, the partition problem, or number partitioning, [1] is the task of deciding whether a given multiset S of positive integers can be partitioned into two subsets S1 and S2 such that the sum of the numbers in S1 equals the sum of the numbers in S2. Although the partition problem is NP-complete, there is a ...
Ceiling function. In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor (x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted ⌈x⌉ or ceil (x). [1]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Scheme offer two functions, remainder and modulo – Ada and PL/I have mod and rem, while Fortran has mod and modulo; in each case, the former agrees in sign with the dividend, and the latter with the divisor. Common Lisp and Haskell also have mod and rem, but mod uses the sign of the divisor and rem uses the sign of the dividend.
The discrete logarithm is just the inverse operation. For example, consider the equation 3 k ≡ 13 (mod 17). From the example above, one solution is k = 4, but it is not the only solution. Since 3 16 ≡ 1 (mod 17)—as follows from Fermat's little theorem—it also follows that if n is an integer then 3 4+16n ≡ 3 4 × (3 16) n ≡ 13 × 1 n ...