Search results
Results from the WOW.Com Content Network
A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. [1][2] Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents. On retrieval, the calculation is repeated ...
The cyclic redundancy check (CRC) is a check of the remainder after division in the ring of polynomials over GF (2) (the finite field of integers modulo 2). That is, the set of polynomials where each coefficient is either zero or one, and arithmetic operations wrap around. Any string of bits can be interpreted as the coefficients of a ...
Computation of cyclic redundancy checks. Computation of a cyclic redundancy check is derived from the mathematics of polynomial division, modulo two. In practice, it resembles long division of the binary message string, with a fixed number of zeroes appended, by the "generator polynomial" string except that exclusive or operations replace ...
A cyclic redundancy check (CRC) is a non-secure hash function designed to detect accidental changes to digital data in computer networks. It is not suitable for detecting maliciously introduced errors.
By far the most popular FCS algorithm is a cyclic redundancy check (CRC), used in Ethernet and other IEEE 802 protocols with 32 bits, in X.25 with 16 or 32 bits, in HDLC with 16 or 32 bits, in Frame Relay with 16 bits, [3] in Point-to-Point Protocol (PPP) with 16 or 32 bits, and in other data link layer protocols.
Parity in this form, applied across multiple parallel signals, is known as a transverse redundancy check. This can be combined with parity computed over multiple bits sent on a single signal, a longitudinal redundancy check. In a parallel bus, there is one longitudinal redundancy check bit per parallel signal.
File verification is the process of using an algorithm for verifying the integrity of a computer file, usually by checksum. This can be done by comparing two files bit-by-bit, but requires two copies of the same file, and may miss systematic corruptions which might occur to both files. A more popular approach is to generate a hash of the copied ...
Low-density parity-check code, also known as Gallager code, as the archetype for sparse graph codes; LT code, which is a near-optimal rateless erasure correcting code (Fountain code) m of n codes; Nordstrom-Robinson code, used in Geometry and Group Theory [31] Online code, a near-optimal rateless erasure correcting code; Polar code (coding theory)