Search results
Results from the WOW.Com Content Network
Hyperbola. A hyperbola is an open curve with two branches, the intersection of a plane with both halves of a double cone. The plane does not have to be parallel to the axis of the cone; the hyperbola will be symmetrical in any case. Hyperbola (red): features. In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its ...
Circle and hyperbola tangent at (1,1) display geometry of circular functions in terms of circular sector area u and hyperbolic functions depending on hyperbolic sector area u. The hyperbolic functions represent an expansion of trigonometry beyond the circular functions. Both types depend on an argument, either circular angle or hyperbolic angle.
Orthoptic (geometry) In the geometry of curves, an orthoptic is the set of points for which two tangents of a given curve meet at a right angle. Parabola. Orthoptic of the parabola (its directrix) Ellipse. Orthoptic of the ellipse (its director circle) Minimum bounding box of the ellipse ( circumscribed by the orthoptic circle) Major and minor ...
In geometry, the relation of hyperbolic orthogonality between two lines separated by the asymptotes of a hyperbola is a concept used in special relativity to define simultaneous events. Two events will be simultaneous when they are on a line hyperbolically orthogonal to a particular timeline. This dependence on a certain timeline is determined ...
The radius and tangent are hyperbolic orthogonal at a since p(a) and are reflections of each other in the asymptote y = x of the unit hyperbola. When interpreted as split-complex numbers (where j j = +1 ), the two numbers satisfy j p ( a ) = d p d a . {\displaystyle jp(a)={\tfrac {dp}{da}}.}
Timelike lines (i.e., those with positive-norm tangents) through the origin pass through antipodal points in the hyperboloid, so the space of such lines yields a model of hyperbolic n-space. The stabilizer of any particular line is isomorphic to the product of the orthogonal groups O( n ) and O(1), where O( n ) acts on the tangent space of a ...
The polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to the origin of a Cartesian system) is called the pole, and the ray from the pole in the reference direction is the polar axis.
Apollonius of Perga gave the following construction of conjugate diameters, given the conjugate hyperbola: "If Q be any point on a hyperbola and CE be drawn from the centre parallel to the tangent at Q to meet the conjugate hyperbola in E, then (1) the tangent at E will be parallel to CQ and (2) CQ and CE will be conjugate diameters." [2]