enow.com Web Search

  1. Ads

    related to: euclidean circle problems with answers worksheet
  2. education.com has been visited by 100K+ users in the past month

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

    • Interactive Stories

      Enchant young learners with

      animated, educational stories.

Search results

  1. Results from the WOW.Com Content Network
  2. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's Elements.

  3. Special cases of Apollonius' problem - Wikipedia

    en.wikipedia.org/wiki/Special_cases_of_Apollonius...

    In general, the same inversion transforms the given line L and given circle C into two new circles, c 1 and c 2. Thus, the problem becomes that of finding a solution line tangent to the two inverted circles, which was solved above. There are four such lines, and re-inversion transforms them into the four solution circles of the Apollonius problem.

  4. Circles of Apollonius - Wikipedia

    en.wikipedia.org/wiki/Circles_of_Apollonius

    In Euclidean plane geometry, Apollonius's problem is to construct circles that are tangent to three given circles in a plane. Three given circles generically have eight different circles that are tangent to them and each solution circle encloses or excludes the three given circles in a different way: in each solution, a different subset of the ...

  5. Intersecting secants theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_secants_theorem

    In Euclidean geometry, the intersecting secants theorem or just secant theorem describes the relation of line segments created by two intersecting secants and the associated circle.

  6. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    The most famous of these problems, squaring the circle, otherwise known as the quadrature of the circle, involves constructing a square with the same area as a given circle using only straightedge and compass. Squaring the circle has been proved impossible, as it involves generating a transcendental number, that is, √ π.

  7. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    This problem is known as the primitive circle problem, as it involves searching for primitive solutions to the original circle problem. [9] It can be intuitively understood as the question of how many trees within a distance of r are visible in the Euclid's orchard , standing in the origin.

  8. Smallest-circle problem - Wikipedia

    en.wikipedia.org/wiki/Smallest-circle_problem

    The smallest-circle problem (also known as minimum covering circle problem, bounding circle problem, least bounding circle problem, smallest enclosing circle problem) is a computational geometry problem of computing the smallest circle that contains all of a given set of points in the Euclidean plane. The corresponding problem in n-dimensional ...

  9. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively.

  1. Ads

    related to: euclidean circle problems with answers worksheet