Search results
Results from the WOW.Com Content Network
Spiral bacteria are another major bacterial cell morphology. [2] [30] [31] [32] Spiral bacteria can be sub-classified as spirilla, spirochetes, or vibrios based on the number of twists per cell, cell thickness, cell flexibility, and motility. [33] Bacteria are known to evolve specific traits to survive in their ideal environment. [34]
The crescentin protein is located on the concave face of these cells and appears to be necessary for their shape, as mutants lacking the protein form rod-shaped cells. [2] To influence the shape of the Caulobacter cells, the helices of crescentin filaments associate with the cytoplasmic side of the cell membrane on one lateral side of the cell.
Bacterial morphological plasticity refers to changes in the shape and size that bacterial cells undergo when they encounter stressful environments. Although bacteria have evolved complex molecular strategies to maintain their shape, many are able to alter their shape as a survival strategy in response to protist predators, antibiotics, the immune response, and other threats.
While all bacterial cell walls (with a few exceptions such as extracellular parasites such as Mycoplasma) contain peptidoglycan, not all cell walls have the same overall structures. Since the cell wall is required for bacterial survival, but is absent in some eukaryotes, several antibiotics (notably the penicillins and cephalosporins) stop ...
During different life cycle stages, such as cell growth, cell division or cell differentiation, internal structures must dynamically adapt to the current requirements. In eukaryotes , these manifold tasks are fulfilled by the cytoskeleton : proteinaceous polymers that assemble into stable or dynamic filaments or tubules in vivo and in vitro .
The cell is the basic structural and functional unit of all forms of life. Every cell consists of cytoplasm enclosed within a membrane; many cells contain organelles, each with a specific function. The term comes from the Latin word cellula meaning 'small room'. Most cells are only visible under a microscope.
Spiroplasma is a genus of Mollicutes, a group of small bacteria without cell walls. Spiroplasma shares the simple metabolism, parasitic lifestyle, fried-egg colony morphology and small genome of other Mollicutes, but has a distinctive helical morphology, unlike Mycoplasma. It has a spiral shape and moves in a corkscrew motion.
[14] α-helices are formed by hydrogen bonding of the backbone to form a spiral shape (refer to figure on the right). [12] The β pleated sheet is a structure that forms with the backbone bending over itself to form the hydrogen bonds (as displayed in the figure to the left).