Ad
related to: electron vapor deposition process- Chemical Vapor Deposition
Deposit Conformal Films Without
The Need For High Vacuum Pumps
- Ion Beam Processing
This Process Is Critical To High
Performance Thin Film Application
- Thermal Evaporation
Physical Vapor Deposition Technique
Used To Form Thin Film Coatings
- Electron Beam Evaporation
Time-Tested Deposition Technology
For Producing High Purity Coatings
- Chemical Vapor Deposition
Search results
Results from the WOW.Com Content Network
The PVD process can be carried out at lower deposition temperatures and without corrosive products, but deposition rates are typically lower. Electron-beam physical vapor deposition, however, yields a high deposition rate from 0.1 to 100 μm/min at relatively low substrate temperatures, with very high material utilization efficiency. The ...
Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polymers. PVD is characterized by a process in which the material transitions from a condensed phase to a ...
Electron-beam machining is a process in which high-velocity electrons are concentrated into a narrow beam with a very high planar power density. The beam cross-section is then focused and directed toward the work piece, creating heat and vaporizing the material. Electron-beam machining can be used to accurately cut or bore a wide variety of metals.
Evaporation is a common method of thin-film deposition. The source material is evaporated in a vacuum. The vacuum allows vapor particles to travel directly to the target object (substrate), where they condense back to a solid state. Evaporation is used in microfabrication, and to make macro-scale products such as metallized plastic film.
Electron-beam-induced deposition (EBID) is a process of decomposing gaseous molecules by an electron beam leading to deposition of non-volatile fragments onto a nearby substrate. The electron beam is usually provided by a scanning electron microscope , which results in high spatial accuracy (potentially below one nanometer) and the possibility ...
Sputter deposition is a physical vapor deposition (PVD) method of thin film deposition by the phenomenon of sputtering. This involves ejecting material from a "target" that is a source onto a "substrate" such as a silicon wafer. Resputtering is re-emission of the deposited material during the deposition process by ion or atom bombardment. [1] [2]
Deposition is any process that grows, coats, or otherwise transfers a material onto the wafer. Available technologies include physical vapor deposition (PVD), chemical vapor deposition (CVD), electrochemical deposition (ECD), molecular beam epitaxy (MBE), and more recently, atomic layer deposition (ALD) among others.
Molecular-beam epitaxy takes place in high vacuum or ultra-high vacuum (10 −8 –10 −12 Torr).The most important aspect of an MBE process is the deposition rate (typically less than 3,000 nm per hour) that allows the films to grow epitaxially (in layers on top of the existing crystal).
Ad
related to: electron vapor deposition process