Search results
Results from the WOW.Com Content Network
Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.
Fuzzy clustering by Local Approximation of MEmberships (FLAME) is a data clustering algorithm that defines clusters in the dense parts of a dataset and performs cluster assignment solely based on the neighborhood relationships among objects.
Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).
Evolving classification functions (ECF), evolving classifier functions or evolving classifiers are used for classifying and clustering in the field of machine learning and artificial intelligence, typically employed for data stream mining tasks in dynamic and changing environments.
Automatic clustering algorithms are algorithms that can perform clustering without prior knowledge of data sets. In contrast with other cluster analysis techniques, automatic clustering algorithms can determine the optimal number of clusters even in the presence of noise and outlier points. [1] [needs context]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
In October, U.S. officials said TD bank employees received at least $57,000 in gift cards in 2020 and 2021 from one criminal who moved more than $400 million in transactions through the bank.
In computer science, locality-sensitive hashing (LSH) is a fuzzy hashing technique that hashes similar input items into the same "buckets" with high probability. [1] ( The number of buckets is much smaller than the universe of possible input items.) [1] Since similar items end up in the same buckets, this technique can be used for data clustering and nearest neighbor search.