enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Well-order - Wikipedia

    en.wikipedia.org/wiki/Well-order

    The standard ordering ≤ of the natural numbers is a well ordering and has the additional property that every non-zero natural number has a unique predecessor. Another well ordering of the natural numbers is given by defining that all even numbers are less than all odd numbers, and the usual ordering applies within the evens and the odds:

  3. Well-ordering principle - Wikipedia

    en.wikipedia.org/wiki/Well-ordering_principle

    Then, by the well-ordering principle, there is a least element ; cannot be prime since a prime number itself is considered a length-one product of primes. By the definition of non-prime numbers, n {\displaystyle n} has factors a , b {\displaystyle a,b} , where a , b {\displaystyle a,b} are integers greater than one and less than n ...

  4. Well-ordering theorem - Wikipedia

    en.wikipedia.org/wiki/Well-ordering_theorem

    In mathematics, the well-ordering theorem, also known as Zermelo's theorem, states that every set can be well-ordered. A set X is well-ordered by a strict total order if every non-empty subset of X has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are ...

  5. Ordinal number - Wikipedia

    en.wikipedia.org/wiki/Ordinal_number

    Every well-ordered set (S,<) is order-isomorphic to the set of ordinals less than one specific ordinal number under their natural ordering. This canonical set is the order type of ( S ,<). Essentially, an ordinal is intended to be defined as an isomorphism class of well-ordered sets: that is, as an equivalence class for the equivalence relation ...

  6. Von Neumann cardinal assignment - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann_cardinal...

    Also, is the smallest uncountable ordinal (to see that it exists, consider the set of equivalence classes of well-orderings of the natural numbers; each such well-ordering defines a countable ordinal, and is the order type of that set), is the smallest ordinal whose cardinality is greater than , and so on, and is the limit of for natural ...

  7. Real number - Wikipedia

    en.wikipedia.org/wiki/Real_number

    The well-ordering theorem implies that the real numbers can be well-ordered if the axiom of choice is assumed: there exists a total order on with the property that every nonempty subset of has a least element in this ordering.

  8. Georg Cantor - Wikipedia

    en.wikipedia.org/wiki/Georg_Cantor

    It begins by defining well-ordered sets. Ordinal numbers are then introduced as the order types of well-ordered sets. Cantor then defines the addition and multiplication of the cardinal and ordinal numbers. In 1885, Cantor extended his theory of order types so that the ordinal numbers simply became a special case of order types.

  9. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    The cardinality of the natural numbers is ℵ 0 (read aleph-nought, aleph-zero, or aleph-null), the next larger cardinality of a well-ordered set is aleph-one ℵ 1, then ℵ 2 and so on. Continuing in this manner, it is possible to define a cardinal number ℵ α for every ordinal number α , as described below.