Search results
Results from the WOW.Com Content Network
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]
Power analyses can be used to calculate the minimum sample size required so that one can be reasonably likely to detect an effect of a given size (in other words, producing an acceptable level of power). For example: "How many times do I need to toss a coin to conclude it is rigged by a certain amount?"
The minimum and the maximum value are the first and last order statistics (often denoted X (1) and X (n) respectively, for a sample size of n). If the sample has outliers, they necessarily include the sample maximum or sample minimum, or both, depending on whether they are extremely high or low. However, the sample maximum and minimum need not ...
Compromise analyses find implied power based on the beta/alpha ratio, or q, and inputted values for effect size and sample size. Criterion analyses calculate the required alpha value based on the inputted power, effect size, and sample size. Post hoc analyses find actual power based on the inputted alpha, sample size, and effect size.
Finally, in some cases (such as designs with a large number of strata, or those with a specified minimum sample size per group), stratified sampling can potentially require a larger sample than would other methods (although in most cases, the required sample size would be no larger than would be required for simple random sampling).
Fisher's exact test is a statistical significance test used in the analysis of contingency tables. [1] [2] [3] Although in practice it is employed when sample sizes are small, it is valid for all sample sizes.
In statistics, minimum chi-square estimation is a method of estimation of unobserved quantities based on observed data. [1]In certain chi-square tests, one rejects a null hypothesis about a population distribution if a specified test statistic is too large, when that statistic would have approximately a chi-square distribution if the null hypothesis is true.
When the dispersion is known the required sample size () is obtained from ... Online MIL-STD-414 Calculator (SQC Online) Further reading. Schilling, ...