Search results
Results from the WOW.Com Content Network
A variant of this single set approach is using a special parameter set fitted for the examined temperature range. The second solution is switching to another vapor pressure equation with more than three parameters. Commonly used are simple extensions of the Antoine equation (see below) and the equations of DIPPR or Wagner. [2] [3]
VLE of the mixture of chloroform and methanol plus NRTL fit and extrapolation to different pressures. The non-random two-liquid model [1] (abbreviated NRTL model) is an activity coefficient model introduced by Renon and Prausnitz in 1968 that correlates the activity coefficients of a compound with its mole fractions in the liquid phase concerned.
The Dortmund Data Bank [1] (short DDB) is a factual data bank for thermodynamic and thermophysical data. Its main usage is the data supply for process simulation where experimental data are the basis for the design, analysis, synthesis, and optimization of chemical processes.
The Antoine equation [3] [4] is a pragmatic mathematical expression of the relation between the vapor pressure and the temperature of pure liquid or solid substances. It is obtained by curve-fitting and is adapted to the fact that vapor pressure is usually increasing and concave as a function of temperature.
Coefficients for partition between water and solvents wet/dry solvent c e s a b v source w 1-butanol: 0.376 0.434 -0.718 -0.097 -2.350 2.682 [1]w
The preceding equilibrium equations are typically applied for each phase (liquid or vapor) individually, but the result can be plotted in a single diagram. In a binary boiling-point diagram, temperature ( T ) (or sometimes pressure) is graphed vs. x 1 .
A decades-old cosmetic procedure called mesotherapy, which involves injecting unregulated mixtures of vitamins and drugs under the skin to reduce under-eye bags, is regaining popularity in the US.
In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. [1] In an ideal mixture, the microscopic interactions between each pair of chemical species are the same (or macroscopically equivalent, the enthalpy change of solution and volume variation in mixing is zero) and, as a result, properties of the mixtures ...