Search results
Results from the WOW.Com Content Network
The H+/2e − ratios of the three major respiratory complexes are generally agreed to be 4, 4, and 2 for Complexes I, III, and IV respectively. [7] The H + /O ratio thus depends whether the substrate electrons enter at the level of NADH (passing through all three for 10 H + /2e −) or ubiquinol (passing through only complexes III and IV for 6H ...
If ATP synthesis is momentarily insufficient to maintain an adequate energy charge, AMP can be converted by two different pathways to hypoxanthine and ribose-5P, followed by irreversible oxidation of hypoxanthine to uric acid. This helps to buffer the adenylate energy charge by decreasing the total {ATP+ADP+AMP} concentration. [10]
ATP 4− + Mg 2+ ⇌ MgATP 2−, log β 4. is particularly large. [3] The formation of the magnesium complex is a critical element in the process of ATP hydrolysis, as it weakens the link between the terminal phosphate group and the rest of the molecule. [2] [4] The energy released in ATP hydrolysis, ATP 4− + H 2 O → ADP 3− + P i −
Substrate-level phosphorylation exemplified with the conversion of ADP to ATP. Substrate-level phosphorylation is a metabolism reaction that results in the production of ATP or GTP supported by the energy released from another high-energy bond that leads to phosphorylation of ADP or GDP to ATP or GTP (note that the reaction catalyzed by creatine kinase is not considered as "substrate-level ...
In biochemistry, dephosphorylation is the removal of a phosphate (PO 3− 4) group from an organic compound by hydrolysis. It is a reversible post-translational modification. Dephosphorylation and its counterpart, phosphorylation, activate and deactivate enzymes by detaching or attaching phosphoric esters and anhydrides.
The above reactions are balanced if P i represents the H 2 PO 4 − ion, ADP and GDP the ADP 2− and GDP 2− ions, respectively, and ATP and GTP the ATP 3− and GTP 3− ions, respectively. The total number of ATP molecules obtained after complete oxidation of one glucose in glycolysis, citric acid cycle, and oxidative phosphorylation is ...
These carbon molecules are oxidized into NADH and ATP. For the glucose molecule to oxidize into pyruvate, an input of ATP molecules is required. This is known as the investment phase, in which a total of two ATP molecules are consumed. At the end of glycolysis, the total yield of ATP is four molecules, but the net gain is two ATP molecules.
ATP is shown in red, ADP and phosphate in pink and the rotating γ subunit in black. This ATP synthesis reaction is called the binding change mechanism and involves the active site of a β subunit cycling between three states. [77] In the "open" state, ADP and phosphate enter the active site (shown in brown in the diagram).