Search results
Results from the WOW.Com Content Network
The two-dimensional parity-check code, usually called the optimal rectangular code, is the most popular form of multidimensional parity-check code. Assume that the goal is to transmit the four-digit message "1234", using a two-dimensional parity scheme. First the digits of the message are arranged in a rectangular pattern: 12 34
Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]
For general , the generator matrix of the augmented Hadamard code is a parity-check matrix for the extended Hamming code of length and dimension , which makes the augmented Hadamard code the dual code of the extended Hamming code. Hence an alternative way to define the Hadamard code is in terms of its parity-check matrix: the parity-check ...
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.
The parity-check matrix of a Hamming code is constructed by listing all columns of length r that are non-zero, which means that the dual code of the Hamming code is the shortened Hadamard code, also known as a Simplex code. The parity-check matrix has the property that any two columns are pairwise linearly independent.
A qubit is a two-level system, and when we measure one qubit, we can have either 1 or 0 as a result. One corresponds to odd parity, and zero corresponds to even parity. This is what a parity check is. This idea can be generalized beyond single qubits. This can be generalized beyond a single qubit and it is useful in QEC.
such vectors and have dimension N so it is sufficient to check that the N vectors span; equivalently it is sufficient to check that (,) =. Let x be a binary vector of length m , an element of X . Let ( x ) i denote the i th element of x .
To convolutionally encode data, start with k memory registers, each holding one input bit.Unless otherwise specified, all memory registers start with a value of 0. The encoder has n modulo-2 adders (a modulo 2 adder can be implemented with a single Boolean XOR gate, where the logic is: 0+0 = 0, 0+1 = 1, 1+0 = 1, 1+1 = 0), and n generator polynomials — one for each adder (see figure below).