Search results
Results from the WOW.Com Content Network
Relation between chemical reaction conversion selectivity and yield. In chemical reaction engineering, "yield", "conversion" and "selectivity" are terms used to describe ratios of how much of a reactant has reacted—conversion, how much of a desired product was formed—yield, and how much desired product was formed in ratio to the undesired product—selectivity, represented as X, S, and Y.
Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...
Yield vs. Z - This is a typical distribution for the fission of uranium. Note that in the calculations used to make this graph the activation of fission products was ignored and the fission was assumed to occur in a single moment rather than a length of time. In this bar chart results are shown for different cooling times (time after fission).
In this method the chemical equation is used to calculate the amount of one product which can be formed from each reactant in the amount present. The limiting reactant is the one which can form the smallest amount of the product considered. This method can be extended to any number of reactants more easily than the first method.
This requires mixing the compounds in a reaction vessel, such as a chemical reactor or a simple round-bottom flask. Many reactions require some form of processing ("work-up") or purification procedure to isolate the final product. [1] The amount produced by chemical synthesis is known as the reaction yield.
The chemical elements are what the periodic table classifies and organizes. Hydrogen is the element with atomic number 1; helium , atomic number 2; lithium , atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter chemical symbol ; those for hydrogen, helium, and lithium are respectively H, He, and Li ...
Dividend Yield of Company No. 1 = $1 / $40 = 2.5% Dividend Yield of Company No. 2 = $1 / $20 = 5.0% If your main goal is to get the most out of your dividends, Company No. 2 is likely the better buy.
Atom economy. Atom economy (atom efficiency/percentage) is the conversion efficiency of a chemical process in terms of all atoms involved and the desired products produced. The simplest definition was introduced by Barry Trost in 1991 and is equal to the ratio between the mass of desired product to the total mass of reactants, expressed as a percentage.