Search results
Results from the WOW.Com Content Network
OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...
The dataset is labeled with semantic labels for 32 semantic classes. over 700 images Images Object recognition and classification 2008 [56] [57] [58] Gabriel J. Brostow, Jamie Shotton, Julien Fauqueur, Roberto Cipolla RailSem19 RailSem19 is a dataset for understanding scenes for vision systems on railways. The dataset is labeled semanticly and ...
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
In other projects Wikidata item; Appearance. ... Pages in category "Datasets in machine learning" The following 12 pages are in this category, out of 12 total.
Kaggle is a data science competition platform and online community for data scientists and machine learning practitioners under Google LLC.Kaggle enables users to find and publish datasets, explore and build models in a web-based data science environment, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.
Sample images from MNIST test dataset. The MNIST database (Modified National Institute of Standards and Technology database [1]) is a large database of handwritten digits that is commonly used for training various image processing systems. [2] [3] The database is also widely used for training and testing in the field of machine learning.
The CIFAR-10 dataset (Canadian Institute For Advanced Research) is a collection of images that are commonly used to train machine learning and computer vision algorithms. It is one of the most widely used datasets for machine learning research. [1] [2] The CIFAR-10 dataset contains 60,000 32x32 color images in 10 different classes. [3]
Decision trees are a popular method for various machine learning tasks. Tree learning is almost "an off-the-shelf procedure for data mining", say Hastie et al., "because it is invariant under scaling and various other transformations of feature values, is robust to inclusion of irrelevant features, and produces inspectable models.