Search results
Results from the WOW.Com Content Network
The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type of average), except that instead of each of the data points contributing equally to the final average, some data points contribute more than others.
A weight function is a mathematical device used when performing a sum, integral, or average to give some elements more "weight" or influence on the result than other elements in the same set. The result of this application of a weight function is a weighted sum or weighted average .
For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().
The second form above illustrates that the logarithm of the geometric mean is the weighted arithmetic mean of the logarithms of the individual values. If all the weights are equal, the weighted geometric mean simplifies to the ordinary unweighted geometric mean. [1]
This method can also be used to create spatial weights matrices in spatial autocorrelation analyses (e.g. Moran's I). [1] The name given to this type of method was motivated by the weighted average applied, since it resorts to the inverse of the distance to each known point ("amount of proximity") when assigning weights.
The triangular distribution has a mean equal to the average of the three parameters: μ = a + b + c 3 {\displaystyle \mu ={\frac {a+b+c}{3}}} which (unlike PERT) places equal emphasis on the extreme values which are usually less-well known than the most likely value, and is therefore less reliable.
One very early weighted estimator is the Horvitz–Thompson estimator of the mean. [3] When the sampling probability is known, from which the sampling population is drawn from the target population, then the inverse of this probability is used to weight the observations. This approach has been generalized to many aspects of statistics under ...
For any q > 0 and non-negative weights summing to 1, the following inequality holds: (=) / = (=) /. The proof follows from Jensen's inequality , making use of the fact the logarithm is concave: log ∏ i = 1 n x i w i = ∑ i = 1 n w i log x i ≤ log ∑ i = 1 n w i x i . {\displaystyle \log \prod _{i=1}^{n}x_{i}^{w_{i}}=\sum _{i=1 ...