Search results
Results from the WOW.Com Content Network
Python's runtime does not restrict access to such attributes, the mangling only prevents name collisions if a derived class defines an attribute with the same name. On encountering name mangled attributes, Python transforms these names by prepending a single underscore and the name of the enclosing class, for example: >>>
Pages in category "Articles with example Python (programming language) code" The following 200 pages are in this category, out of approximately 201 total. This list may not reflect recent changes. (previous page)
This can happen in multi-threaded environments, or even in single-threaded environments when other code (typically called in the destruction of some object) resets the global variable before the checking code. The following example shows a way to avoid this problem (see [dead link ] or ; cf. ). But at the cost of not being able to use return ...
The location (in memory) of the code for handling an exception need not be located within (or even near) the region of memory where the rest of the function's code is stored. So if an exception is thrown then a performance hit – roughly comparable to a function call [ 24 ] – may occur if the necessary exception handling code needs to be ...
Python's name is derived from the British comedy group Monty Python, whom Python creator Guido van Rossum enjoyed while developing the language. Monty Python references appear frequently in Python code and culture; [190] for example, the metasyntactic variables often used in Python literature are spam and eggs instead of the traditional foo and ...
In Python, if a name is intended to be "private", it is prefixed by one or two underscores. Private variables are enforced in Python only by convention. Names can also be suffixed with an underscore to prevent conflict with Python keywords. Prefixing with double underscores changes behaviour in classes with regard to name mangling.
Introduced in Python 2.2 as an optional feature and finalized in version 2.3, generators are Python's mechanism for lazy evaluation of a function that would otherwise return a space-prohibitive or computationally intensive list. This is an example to lazily generate the prime numbers:
The default can be overridden (e.g. in source code comment) to Python 3 (or 2) syntax. Since Python 3 syntax has changed in recent versions, Cython may not be up to date with the latest additions. Cython has "native support for most of the C++ language" and "compiles almost all existing Python code". [7] Cython 3.0.0 was released on 17 July ...