Search results
Results from the WOW.Com Content Network
The Shapiro–Wilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).
Kolmogorov–Smirnov test: this test only works if the mean and the variance of the normal distribution are assumed known under the null hypothesis, Lilliefors test: based on the Kolmogorov–Smirnov test, adjusted for when also estimating the mean and variance from the data, Shapiro–Wilk test, and; Pearson's chi-squared test.
The Shapiro–Francia test is a statistical test for the normality of a population, based on sample data. It was introduced by S. S. Shapiro and R. S. Francia in 1972 as a simplification of the Shapiro–Wilk test .
Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.
Empirical testing has found [5] that the Anderson–Darling test is not quite as good as the Shapiro–Wilk test, but is better than other tests. Stephens [ 1 ] found A 2 {\displaystyle A^{2}} to be one of the best empirical distribution function statistics for detecting most departures from normality.
Kolmogorov–Smirnov test; Cramér–von Mises criterion; Anderson–Darling test; Berk-Jones tests [1] [2] Shapiro–Wilk test; Chi-squared test; Akaike information criterion; Hosmer–Lemeshow test; Kuiper's test; Kernelized Stein discrepancy [3] [4] Zhang's Z K, Z C and Z A tests [5] Moran test; Density Based Empirical Likelihood Ratio tests [6]
Just Words. If you love Scrabble, you'll love the wonderful word game fun of Just Words. Play Just Words free online! By Masque Publishing
The likelihood-ratio test, also known as Wilks test, [2] is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier test and the Wald test. [3] In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent.