enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Internal resistance - Wikipedia

    en.wikipedia.org/wiki/Internal_resistance

    When the power source delivers current, the measured voltage output is lower than the no-load voltage; the difference is the voltage drop (the product of current and resistance) caused by the internal resistance. The concept of internal resistance applies to all kinds of electrical sources and is useful for analyzing many types of circuits.

  3. Ohm's law - Wikipedia

    en.wikipedia.org/wiki/Ohm's_law

    Ohm's law, in the form above, is an extremely useful equation in the field of electrical/electronic engineering because it describes how voltage, current and resistance are interrelated on a "macroscopic" level, that is, commonly, as circuit elements in an electrical circuit.

  4. Current–voltage characteristic - Wikipedia

    en.wikipedia.org/wiki/Current–voltage...

    The current–voltage characteristics of four devices: a resistor with large resistance, a resistor with small resistance, a P–N junction diode, and a battery with nonzero internal resistance. The horizontal axis represents the voltage drop, the vertical axis the current.

  5. Current source - Wikipedia

    en.wikipedia.org/wiki/Current_source

    The compliance voltage is the maximum voltage that the current source can supply to a load. Over a given load range, it is possible for some types of real current sources to exhibit nearly infinite internal resistance. However, when the current source reaches its compliance voltage, it abruptly stops being a current source.

  6. Shockley diode equation - Wikipedia

    en.wikipedia.org/wiki/Shockley_diode_equation

    The Shockley equation doesn't model noise (such as Johnson–Nyquist noise from the internal resistance, or shot noise). The Shockley equation is a constant current (steady state) relationship, and thus doesn't account for the diode's transient response , which includes the influence of its internal junction and diffusion capacitance and ...

  7. Maximum power transfer theorem - Wikipedia

    en.wikipedia.org/wiki/Maximum_power_transfer_theorem

    Simplified model for powering a load with resistance R L by a source with voltage V S and resistance R S.. The theorem was originally misunderstood (notably by Joule [4]) to imply that a system consisting of an electric motor driven by a battery could not be more than 50% efficient, since the power dissipated as heat in the battery would always be equal to the power delivered to the motor when ...

  8. Electrical resistance and conductance - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistance_and...

    Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...

  9. Voltage source - Wikipedia

    en.wikipedia.org/wiki/Voltage_source

    The internal resistance of an ideal voltage source is zero; it is able to supply or absorb any amount of current. The current through an ideal voltage source is completely determined by the external circuit. When connected to an open circuit, there is zero current and thus zero power.