Ads
related to: list of quadratic equations in standard form
Search results
Results from the WOW.Com Content Network
In mathematics, a quadratic equation (from Latin quadratus 'square') is an equation that can be rearranged in standard form as [1] + + =, where the variable x represents an unknown number, and a, b, and c represent known numbers, where a ≠ 0. (If a = 0 and b ≠ 0 then the equation is linear, not quadratic.)
Defining equation (physical chemistry) List of equations in classical mechanics; Table of thermodynamic equations; List of equations in wave theory; List of electromagnetism equations; List of relativistic equations; List of equations in fluid mechanics; List of equations in gravitation; List of photonics equations; List of equations in quantum ...
The quadratic formula can equivalently be written using various alternative expressions, for instance = (), which can be derived by first dividing a quadratic equation by , resulting in + + = , then substituting the new coefficients into the standard quadratic formula.
In general, a quadratic equation can be expressed in the form + + =, [42] where a is not zero (if it were zero, then the equation would not be quadratic but linear). Because of this a quadratic equation must contain the term a x 2 {\displaystyle ax^{2}} , which is known as the quadratic term.
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. It can be used in conjunction with other tools for evaluating sums.
To convert the standard form to factored form, one needs only the quadratic formula to determine the two roots r 1 and r 2. To convert the standard form to vertex form, one needs a process called completing the square. To convert the factored form (or vertex form) to standard form, one needs to multiply, expand and/or distribute the factors.
A mapping q : M → R : v ↦ b(v, v) is the associated quadratic form of b, and B : M × M → R : (u, v) ↦ q(u + v) − q(u) − q(v) is the polar form of q. A quadratic form q : M → R may be characterized in the following equivalent ways: There exists an R-bilinear form b : M × M → R such that q(v) is the associated quadratic form.
The quadratic formula =. is a closed form of the solutions to the general quadratic equation + + =. More generally, in the context of polynomial equations, a closed form of a solution is a solution in radicals; that is, a closed-form expression for which the allowed functions are only n th-roots and field operations (+,,, /).
Ads
related to: list of quadratic equations in standard form